

Development of a CFTR Control Panel to Monitor All ACMG-100 Variants

Jessica Hayden¹, Aldona Karaczyn¹, Joan Gordon¹, <u>Joe Salem</u>¹, Jacob Schurkman¹, Tania Spenlinhauer¹, Andrew Bradford², Katarzyna Gawlik², Laura Mendez² **G021** ¹ Maine Molecular Quality Controls Inc., Saco, Maine

² Agena Bioscience, San Diego, California

Introduction

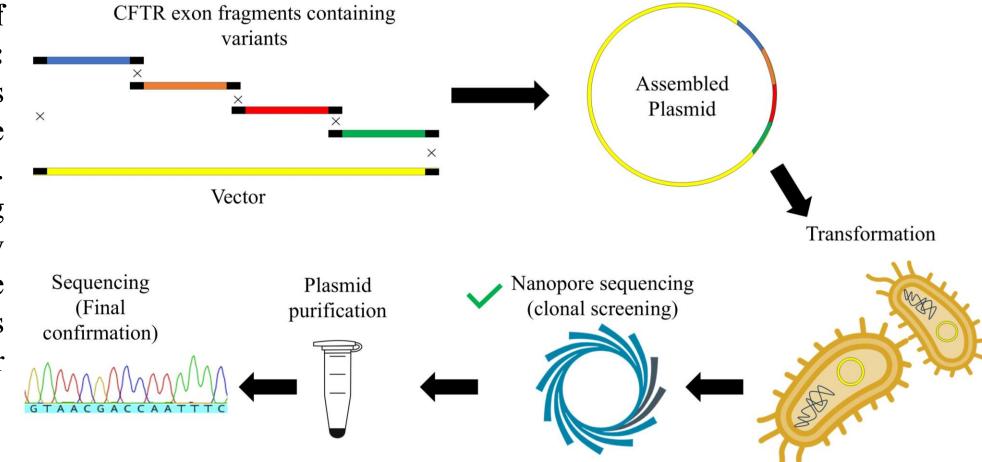
In 2001, the American College of Medical Genetics and Genomics (ACMG) published a list of 23 variants that should be included in carrier screening for cystic fibrosis. In 2023, ACMG updated their recommended variant list to 100 [1]. Next-generation sequencing (NGS) and MassARRAY are now routine methods to detect CFTR variants in clinical laboratories. Although testing is routine, template preparation and bioinformatics pipelines are complex. Sequence noise and amplification errors must be reliably distinguished from true variant calls. Sanger sequenced-verified external controls are critical to monitor the ability of any NGS or MassARRAY test system to correctly identify both simple and complex genome variants. Here, we describe development and verification of a safe, non-infectious, and easy-to-use 6-bottle CFTR control panel containing all 100 ACMG-recommended variants, as well as variants challenging to NGS systems.

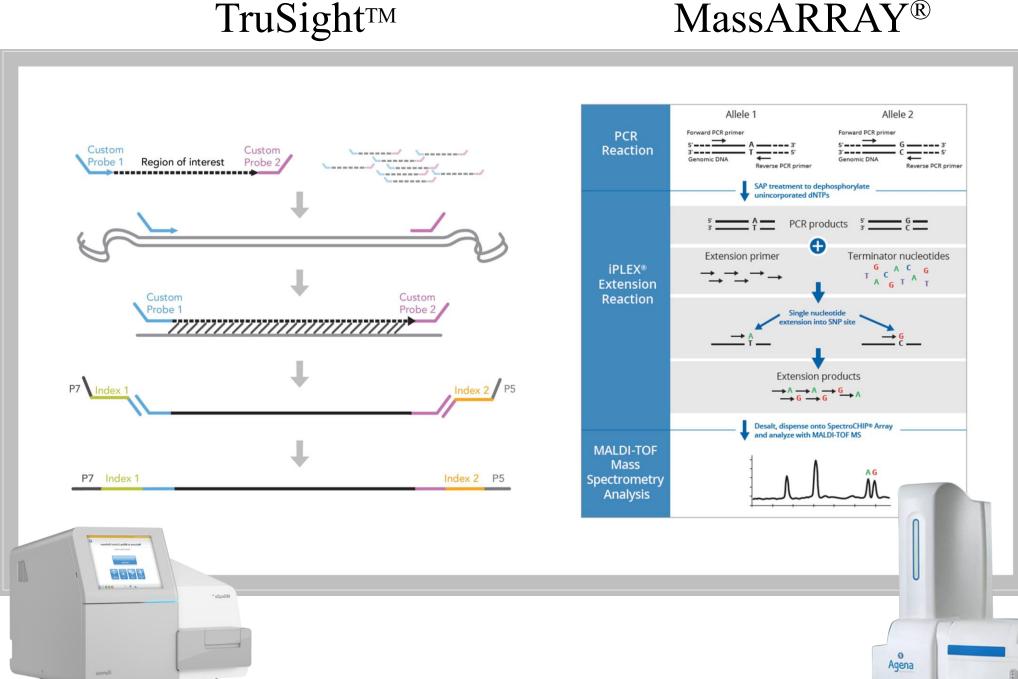
Materials and Methods

Twenty-eight additional variants were added to existing plasmids from the previous version of the control panel (see Table 2, asterisk*). Plasmids contain all CFTR exons with intronic borders and were used to create a synthetic panel containing a total of 211 CFTR variants and all 100 of the recommended ACMG variants. Fragments containing CFTR variants were designed in-silico, and incorporated using Gibson assembly. Assembled constructs were transformed into bacteria and screened using Oxford Nanopore sequencing. Plasmids were purified from the selected clones and bi-directionally sequenced using Sanger (Figure 1).

Overview of molecular cloning workflow: After transformation, colonies are screened using Nanopore sequencing. successful assembly. To ensure traceability, final plasmids undergo bi-directional Sanger sequencing.

Bottle	Control Name
A	G211Aplus
В	G211Bv1.1
C	G211Cplus
D	G211Dv1.1
E	G211Eplus
F	G211Fplus




Table 1 (left). NGS CF Control G211plus panel configuration: All 211 CFTR variants are split across 6 controls. Purified plasmids each containing unique CFTR variants were mixed at a 1:1 ratio to generate heterozygous calls.

Three unique lots (6 control bottles per lot) were tested by NGS using the Illumina TruSightTM CF Clinical Sequencing Assay on the MiSeqDx at MMQCI. One lot of G211plus controls was also provided to Agena Bioscience for testing on the new CFTR100+ assay using the MassARRAY® system. CFTR100+ is designed to detect all ACMG-100 variants. Figure 2 (below) shows a brief description of their workflows.

Figure 2.

Test Systems: The controls are designed to monitor all aspects of the test system. Illumina TruSight CF library prep uses probe hybridization to target regions of interest for paired-end sequencing. Agena Bioscience's CFTR100+ assay uses PCR to target regions of interest. Subsequently, PCR products undergo a single base extension reaction (iPLEX chemistry) complementary to the allele of interest. Extension products are analyzed by MALDI-TOF MS and specific alleles are identified by unique masses.

Table 2: List of all 211 variants in the NGS CF Control G211*plus* panel (ACMG-100 is **bolded**, the 28 newly added ACMG-100 variants have an asterisk*)

		cHGVS (Legacy)		
c.1A>G (M1V)	c.805_806delAT (936delTA)		c.2260G>A (V754M)	c.3454G>C (D1152H)
c.4C>T (Q2X)*	c.868C>T (Q290X)*	c.1573C>T (Q525X)	c.2290C>T (R764XC>T)	c.3472C>T (R1158X)
c.91C>T (R31C)	c.929TCT[2] (delF311)	c.1584+1G>A (1716+1G->A)*	c.2353C>T (R785X)*	c.3484C>T (R1162X)
c.115C>T (Q39X)	c.948delT (1078delT)	c.1585-1G>A (1717-1G>A)	c.2374C>T (R792X)*	c.3485G>T (R1162L)
c.164+2T>A (296+2T>A)	c.988G>T (G330X)	c.1585-8G>A (1717-8G>A)	c.2453delT (2585delT)	c.3528delC (3659delC)
c.178G>T (E60X)	c.1000C>T (R334W)	c.1624G>T (G542X)	c.2464G>T (E822X)	c.3536_3539delCCAA (3667del4)
c.200C>T (P67L)	c.1007T>A (I336K)	c.1645A>C (S549R)	c.2490+1G>A (2622+1G>A)	c.3587C>G (S1196X)
c.223C>T (R75X)	c.1013C>T (T338I)	c.1646G>A (S549N)	c.2491G>T (E831X)	c.3611G>A (W1204X (3743G>A))
c.254G>A (G85E)	c.1021T>C (S341P)	c.1647T>G (S549R)	c.2537G>A (W846X)	c.3612G>A (W1204X (3744G>A))
c.262_263delTT (394delTT)	c.1021_1022dupTC (1154insTC)	c.1651G>A (G551S)*	c.2538G>A (W846X(2670))	c.3659delC (3791delC)
c.271G>A (G91R)*	c.1029del (1161delC)*	c.1652G>A (G551D)	c.2551C>T (R851X)	c.3700A>G (I1234V)
c.273G>A (G91G)	c.1040G>A (R347H)	c.1654C>T (Q552XC>T)	c.2583delT (2711delT)	c.3705T>G (S1235R)
c.273+1G>A (405+1 G>A)	c.1040G>C (R347P)	c.1657C>T (R553X)	c.2657+2_2657+3insA (2789+2insA)	c.3717+5G>A (3849+5G->A)*
c.273+3A>C (405+3A>C)	c.1055G>A (R352Q)	c.1673T>C (L558S)	c.2657+5G>A (2789+5G>A)	c.3718-2477C>T (3849+10kb C>T)
	c.1081delT (1213delT)	c.1675G>A (A559T)	c.2668C>T (Q890X)	c.3717+4A>G (3849+4A>G)
c.274-1G>A (406-1 G>A)	c.1090T>C (S364P)	c.1679G>C (R560T)	c.2737_2738insG (2869insG)	c.3731G>A (G1244E)
c.274G>A (E92K)	c.1116+1G>A (1248+1G>A)	c.1679G>A (R560K)	c.2739T>A (Y913X)*	c.3744delA (3876delA)
c.274G>T (E92XG>T)	c.1130dupA (1259insA)	c.1679+1G>A (1811+1G->A)*	c.2780T>C (L927P)	c.3752G>A (S1251N)
c.292C>T (Q98X)	c.1155_1156dupTA (1288insTA)	c.1680-886A>G (1811+1.6 kb)	c.2834C>T (S945L)	c.3607A>G (S1255XA>G)
c.293A>G (Q98R)*	c.1202G>A (W401X (TAG))	c.1680A>C (R560S)*	c.2875delG (3007delG)	c.3764C>A (S1255XC>A)
c.313delA (444delA)	c.1203G>A (W401X (TGA))	c.1680-1G>A (1812-1 G>A)	c.2908G>C (G970R)	c.3773dupT (3905insT)
c.325 327delinsG (457TAT>G)	c.1209+1G>A (1341+1G>A)	c.1682C>A (A561E)*	c.2909G>A (G970D)*	c.3808del (3940delG)*
c.328G>C (D110H)	c.1327_1330dupGATA (1461ins4)	c.1692del (1824delA)*	c.2930C>T (S977F)	c.3808G>A (D1270N)
c.349C>T (R117C)	c.1364C>A (A455E)	c.1705T>G (Y569D)	c.2988G>A (3120G>A)	c.3846G>A (W1282X)
c.350G>A (R117H)	c.1367T>C (V456A)*	c.1727G>C (G576A)	c.2988+1G>A (3120+1G>A)	c.3873+1G>A (4005+1G>A)
c.366T>A (Y122X)	c.1373del (1504delG)*	c.1753G>T (E585X)	c.2989-1G>A (3121-1G>A)	c.3889dupT (4016insT)
c.442delA (574delA)	c.1393-1G>A (1525-1G>A)	c.1766+1G>A (1898+1 G>A)	c.2991G>C (L997F (G>C))	c.3909C>G (N1303K)
c.443T>C (I148T)	c.1397C>A (S466X (C>A))	c.1766+3A>G (1898+3 A>G)	c.3039delC (3171delC)	c.3937C>T (Q1313X)
c.489+1G>T (621+1 G>T)	c.1397C>G (S466X (C>G)	c.1766+5G>T (1898+5G>T)	c.3067_3072delATAGTG (3199del6)	c.4077 4080delinsAA (4209TGTT>AA)
c.531delT (663delT)	c.1400T>C (L467P)	c.1837G>A (A613T)*	c.3080T>C (I1027T)	c.4251delA (4382delA)
c.532G>A (G178R)	c.1408G>A (M470V)	c.1841A>G (D614G)	c.3107C>A (T1036N)*	c.54-5940_273+10250del (CFTRdele2,3)
c.571T>G (F191V)*	c.1418delG (1548delG)	c.1865G>A (G622D)	c.3140-26A>G (3272-26A>G)	c.3964-78_4242+577del (CFTRdel22,23)
c.579+1G>T (711+1 G>T)	c.1438G>T (G480C)	c.1882G>A (G628R)*	c.3194T>C (L1065P)	PolyT (5T to 9T)
c.579+3A>G (711+3 A>G)	c.1466C>A (S489X)	c.1923_1931delinsA (2055del9>A)	c.3196C>T (R1066C)	PolyTG (TG11, TG12)
c.579+5G>A (711+5 G>A)	c.1475C>T (S492F)	c.1976delA (2108delA)	c.3197G>A (R1066H)	
c.580-1G>T (712-1 G>T)	c.1477C>T (Q493X)	c.2002C>T (R668C)	c.3208C>T (R1070W)	
c.595C>T (H199Y)	c.1516A>G (I506V)	c.2012delT (2143delT)	c.3209G>A (R1070Q)	
c.613C>T (P205S C>T)	c.1519A>G (I507V)	c.2051_2052delinsG (2183AA>G)	c.3230T>C (L1077P)	
c.617T>G (L206W)	c.1516ATC[1] (I507del)	c.2052dupA (2184insA)	c.3266G>A (W1089X)	
c.653T>A (L218X)*	c.1521_1523delCTT (F508del)	c.2052delA (2184delA)	c.3276C>A (Y1092X (C>A))	
c.658C>T (Q220X)	c.1523T>G (F508C)	c.2125C>T (R709XC>T)	c.3276C>G (Y1092X (C>G))	
c.680T>G (L227R)	c.1545_1546delTA (1677delTA)	c.2128A>T (K710X)	c.3294G>C (W1098C)*	
c.695T>A (V232D)*	c.1558G>T (V520F)	c.2175dupA (2307insA)	c.3302T>A (M1101K)	
c.723_743+1del (852del22)	c.1572C>A (C524X)*	c.2195T>G (L732X)	c.3310G>T (E1104X)	
c.803delA (935delA)	•	c.2215delG (2347delG)	c.3353C>T (S1118F)*	

Table 3: Breakdown of variant types and subtypes in the control panel.

	Number of variant		
Variant Types & Subtypes	type in the control		
	panel		
Deletions	30		
1 bp	23		
2-6 bp	6		
22 bp	1		
Deletion-Insertion (Delins)	4		
Duplications & Insertions	10		
1 bp	7		
2-4 bp	3		
Large Genomic	2		
Rearrangements	2		
Tandem repeat variants	4		
Substitutions (exon)	131		
A>C	2		
A>G	7		
A > T	1		
C>A	8		
C>G	4		
C>T	33		
G>A	33		
G>C	8		
G>T	11		
T>A	6		
T>C	10		
T>G	8		
Substitution (intronic)	30		
A > C	1		
A>G	5		
C>T	1		
G>A	18		
G>T	4		
T>A	1		

Results (Next Generation Sequencing)

Bottle	P/N	Lot#	Total (n) across 3 sequencing runs	NGS Call rate	Correct calls/Expected Calls	% Concordan
	NGS CF Control Panel	A27MAY25A	6	100.00%	38/38	100.0%
$ \mathbf{A} $		E18JUN25A	6	100.00%	38/38	100.0%
	G211Aplus	E02JUL25A	6	100.00%	38/38	100.0%
	NGS CF Control Panel	B28MAY25A	6	99.04%	38/38	100.0%
$ \mathbf{B} $		C23JUN25A	6	99.04%	38/38	100.0%
	G211Bv1.1	B08JUL25A	6	99.04%	38/38	100.0%
	NGS CF Control Panel	C27MAY25A	6	99.65%	36/36	100.0%
		G18JUN25A	6	99.65%	36/36	100.0%
	G211Cplus	H02JUL25A	6	99.65%	36/36	100.0%
D NGS	NGS CF Control Panel	D28MAY25A	6	99.04%	39/39	100.0%
		E23JUN25A	6	99.04%	39/39	100.0%
	G211Dv1.1	D08JUL25A	6	99.04%	39/39	100.0%
	NGS CF Control Panel	E28MAY25A	6	99.94%	33/33	100.0%
E		G23JUN25A	6	99.94%	33/33	100.0%
G	G211Eplus	E08JUL25A	6	99.94%	33/33	100.0%
R' I	NGS CF Control Panel	F28MAY25A	6	99.04%	44/45	99.8%
		J23JUN25A	6	99.04%	44/45	99.8%
	G211Fplus	U09JUL25A	6	99.04%	44/45	99.8%
			Total n = 108	Avg call rate = 99.45%	684/687	99.60%

B28MAY25A C23JUN25A B08JUL2

0.515

228

0.484

0.471

0.378

F28MAY25A J23JUN25A U09JUL25/

252 **0.457**

0.456

0.342

228

0.435

222

228

0.479

0.347

252

0.473

0.472

0.338

A27MAY25A E18JUN25A E02JUL25A

0.497

0.396

0.495

0.497

0.357

0.492

0.401

0.430

0.429

0.304

N replicates

Minimum AF

N replicates

0.487

0.366

0.503

0.509

0.338

N calls

Mean AF

Minimum

N replicates

Mean AF

Mean AF

9.60%	~15% allele frequency (Fig	gure 3,	below).
	Figure 3. IGV Visualization of	117,267,800 bp	— 188 bp — 117,267,820 bp
1.1 5A	c.3700A>G in G211Fplus. The left image is sorted by base at c.3700 and shows the frequency of each call. The right image highlights	A C	G G G G G G G G G G G G G G G G G G G
I.1 5A	c.3700A>G in paired, unsorted reads.	C ATTICCTICTCA	G G T ATAAGTCCTGGCCAGAGGGT IS PG QR →

117,267,820 bp Chr7:117,267,807 Total count: 5049 A: 4248 (84%, 2181+, 26 746 (15%, 380+, 366-)

Table 4. Total NGS sample replicates and percent correct

calls: A total of 18 G211plus lots (6 controls x 3 lots each)

were manufactured and tested across 3 Illumina TruSight

CF runs. The Clinical Sequencing Assay reports detected

variants along with their specific allele frequencies. Call

rate, a reported percentage, is the number of variant regions

that meet a defined confidence value threshold divided by

the total regions targeted. Each control lot was tested 6

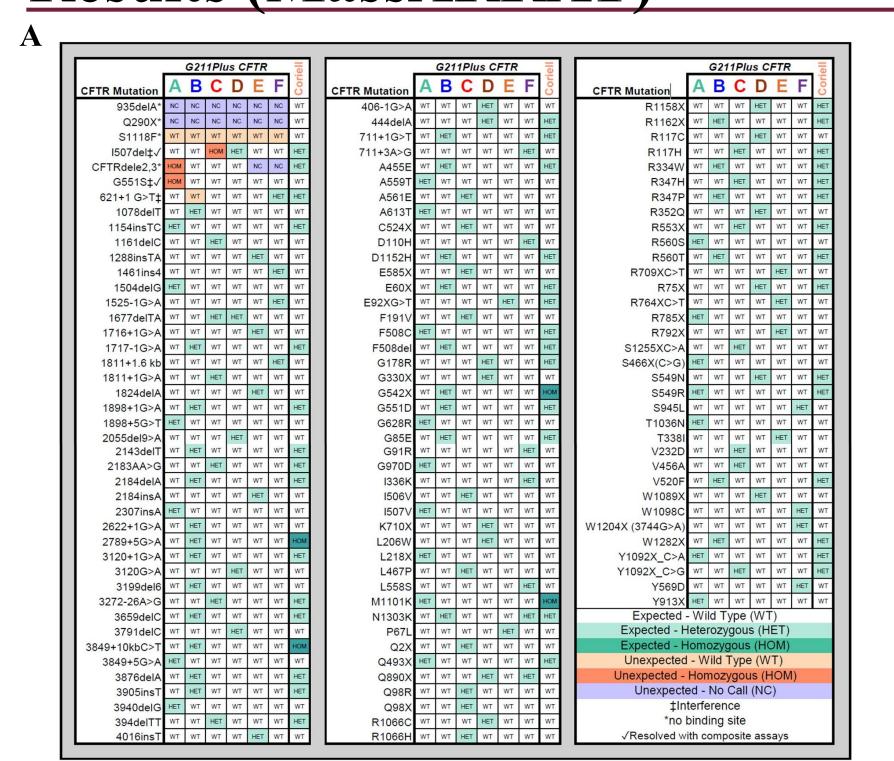
times (total n = 108). Bottles A through E had 100% correct

calls across all NGS runs. Variant c.3700A>G in Bottle F is

not reported because its allele frequency is below a

proprietary cutoff set by Illumina. The low frequency is

caused by a known near-neighbor interference issue with


c.3612G>A. c.3700A>G can still be observed using IGV at

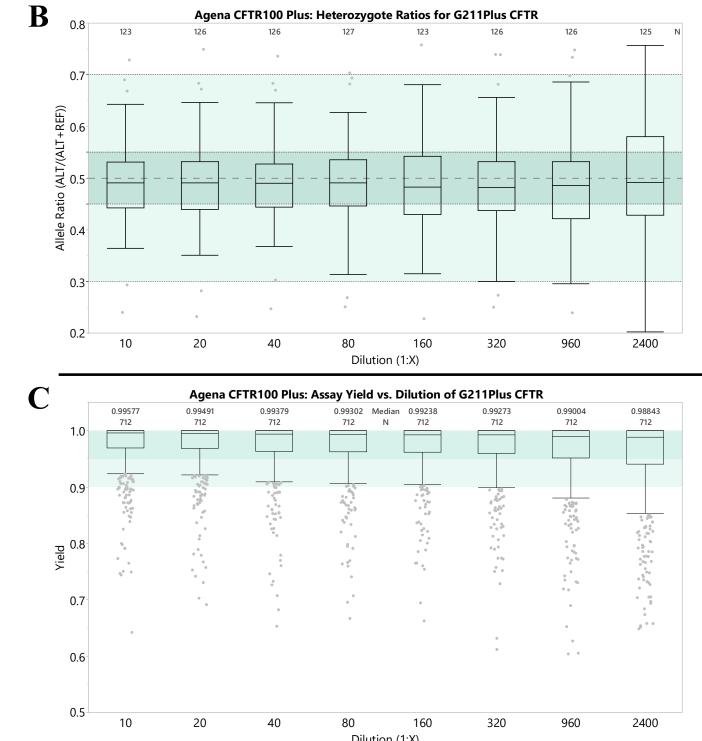

Table 5. Lot-to-lot reproducibility of allele frequency: Allele frequency (AF) summary statistics, including averages, medians, and minimums in each control were calculated using JMP 18. Average allele frequencies ranged from 0.430 to 0.515. Note that PolyT/PolyTG variants and the two LGRs (CFTRdele2,3 and CFTRdele22,23) are reported without frequencies. Homozygous variant c.1408G>A is present in Bottles B and D.

Table 6. Examples with IGV images highlighting the importance of quality controls when interpreting bioinformatic results. Below are examples of how bioinformatics pipelines and variant location can impact NGS reporting.

Variant	Control	TruSight AF Skew	Cause of Skew]	Details	
c.3302T>A	G211Aplus	Low	Illumina bioinformatics The presence of the T>A substitution, which is adjacent to an 'A'-homopolymer cause misalignment at the end of reads. The shift is counted as a "deletion" rather than the 'A'-homopolymer cause misalignment at the end of reads.			1 V	
c.1013C>T	G211Eplus	Low	Illumina bioinformatics When present as the last base at the end of reads, the allele is removed by bioinformatic trimming which significantly reduces the frequency.			· ·	
c.1516A>G	G211Cplus	High	Overlapping variants in the c.1516A>G reports at near homozygous frequency because it is paired with deletion c.1516A in the same control. One allele is 'G' and the other allele is deleted.			- -	
c.1021_1022dupTC	G211Aplus	High	Illumina bioinformatics	Allele frequer	ncy is elevated resulting from du	n a population of unpaired re uplication.	eads containing the TC-
c.3302T>A (Bottle A)		Hiding	c.1013C>T (Bottle I soft-clipped bases Showing sof	E) At-clipped bases	c.1516A>G (Bottle C)	c.1021_1022dup	TC (Bottle A)
7.251,790 bp 117,251,800 bp 1 A A A A A A A A A A A A A A A A A A	94 bp — 95 bp	117,18	0,290 bp 11 117,180,290 ▼ 117,180,290 ▼ 1 17,180,2	94 bp —	G G G G G G G G G G G G G G G G G G G	T T C T C T C T C T C T C T C T C T C T	117,180,300 bp T C

Results (MassARRAY)

	Bottle	Variant	Reason for discrepancy in MassARRAY testing
	D	c.803delA (935delA)	Control is missing intronic coverage.
	D	c.868C>T (Q290X)	Control is missing intronic coverage.
F		c.3353C>T (S1118F)	Control is missing intronic coverage for the MUT allele.
	A	c.54-5940_273+10250del21kb (CFTRdele2,3)	Control is missing intronic for the WT allele.
	A	c.1651G>A (G551S)	Extension primer interference from c.1647T>G (S549R) impacts WT allele.
	В	c.489+1G>T (621+1 G>T)	Nearby c.443T>C interferes with PCR primer.

Figure 4. Results from G211 plus testing on the Agena CFTR 100+ assay: (A) Variant calling heat map of G211plus controls and Coriell samples. (B) Allelic ratios across a dilution series of the control material. The controls were originally developed for NGS. The dilution series suggests that the CFTR100+ assay is more sensitive than NGS. (C) Box plot of assay yield across a dilution series. Yield is a metric that indicates assay performance. Yield > 0.5 is passing. Yield > 0.8 is the target performance goal. G211plus controls generated a median yield of 0.98. (D) Causes for G211plus discrepant calls when tested on the CFTR100+ assay.

Conclusions

- We have developed a new *CFTR* external control panel that can be used to monitor all 100 of the updated ACMG-recommend variants for carrier screening.
- The control panel includes clinically relevant variants of many types that challenge bioinformatic and variant reporting pipelines, including 161 substitutions representing all possible nucleotide changes, 30 small deletions, 4 complex insertion/deletion variants, 10 small insertions/duplications, 2 large genomic rearrangements, and Poly-T/Poly-TG repeats.
- The control panel serves to confidently control for NGS and MassARRAY wet-lab methods despite their fundamentally different chemistries, detection, and output.
- G211 plus controls ensure bioinformatic pipelines can detect all relevant CFTR variants and reveal causes of allelic skew from bioinformatic processing.

Acknowledgements: Special thanks to Agena Bioscience and their colleagues: Andy Bradford for the MassARRAY figures, Laura Mendez who ran the titration experiment, and Katarzyna Gawlik who tested the Coriell samples.

[1] Deignan JL, Gregg AR, Monaghan KG, et al. Updated recommendations for CFTR carrier screening: A position statement of the American College of Medical Genetics and Genomics. Genetics in Medicine. 2023